INTRODUCTION

e Locus Coeruleus (LC) is a brainstem nucleus with the largest group of noradrenaline producing neurons. Dysregulation of LC systems contributes to cognitive dysfunctions in both healthy aged brains and brains that succumb to Alzheimer's disease. Notably, the LC is heterogeneous along the rostral-caudal and dorsal-ventral axes with respect to neuron morphology, projection targets, and vulnerability to the impact of normative brain aging anc
neurodegenerative disease. In previous studies in our laboratory, we identified three distinct subnuclei in the macaque LC: a
 within the medial nucleus.
In this study, we describe in detail the 3D anatomy of the LC nucleus using Nissl-stained tyrosine hydroxylase (TH)-immunoreactivity, and MRI data of one macaque. Next, we describe the neuroarchitecture of the long-range processes of TH-positive LC neurons in the midbrain. Finally, we establish a protocol using AMIRA software for counting cells along the rostral
caudal axis and within the described compartments of LC.

METHODS

Acolony of 30 cognitively assessed rhesus macaques ranging in age from 7 to 32 years (human equivalent $\sim 21-96$ years) was used for this project. (spoiled gradient echo sequence, 3D SPGR) at
Animals underwent in vivo T1-weighted MRI scans (Animals underwent in vivo T1-weighted
$0.625 \mathrm{~mm} \times 0.625 \mathrm{~mm} \times 1.00 \mathrm{~mm}$ resolution.
After perfusion, tissue was sectioned coronally at $30 \mu \mathrm{~m}$ and every 4th section was labeled with standard Nissl procedures. Adjacent sections (thus sampled every 8th section) were labeled with
immunomarkers for catecholaminergic (Anti-Tyrosine Hydroxylase, TH) neurons to define the IC boundaries. 20High-resolution $5 \times$ microscopy Nissl images were processed and aligned in Fiji's bioimage and Adobe Photoshop to create stacks of images with appropriate dimensions. AMIRA software (Thermo Fisher Scientific) was used to align Nissl, anti-TH and MRI data using the following workflow: Segmentation of ROI brainstem from MRI stack; Segmentation of ROI brainstem from Nissl stack; Alignments of segmented Nissl stack with segmented MRI; Registration and Segmentation of LC compartments; Estimation of LC volume
AMIRA software was also used to analyze the cell counts in each compartment. To accomplish this, LC
TH-positive cells were first segmented manually to determine the range of possible cell dimensions to TH-positive cells were first segmented manually to determine the range of possible cell dimensions to
use for later segmentation. Next, all TH-positive neurons and processes were segmented using automatic AMIRA procedures, and the previously established cell dimensions were used to select putative cells within LC compartments. These automatic cell counts were compared with manual cell counts from within the LC nucleus to verify their accuracy

1 Anti-TH and Nissl-stained cell bodies define LC boundaries the most rostral LC

the most caudal LC

Immuno anti-TH

2

LC medial and LC lateral compartments were distinguishable based on their location with respect to the periaqueductal gray (PAG), which surrounds 4th ventricule. LC lateral lies outside of the gray area and blends with mesencephalic (me5) tract. Within the LC medial subnucleus was a region of particularly high cell density - LC compact

3 A preliminary estimate of LC volume in adult and aged monkeys

Joan, 31 y 8 months

Older monkeys tended to have smaller LC volumes
compared to the younger individuals. This was driven compared to the younger individuals. This was driven
mostly by the LC medial compartment. This will need mostly by the LC medial compartment. This will ne
to be replicated in the full sample of 30 animals.

4 The alignment of anti-TH and Nissl-stained sections with MRI The macaque $L C$ proper nucleus extends approximately 2.4 mm along the rostro-caudal axis

5 AMIRA software was also used to analyze the cell counts in each compartment

A: High-resolution images were taken at microscope. Each LC image was comprised of individual z z-stacked image tiled together using Zen Blue. B: The
putative cells within LC compartments putative cells within LC compartments
were obtained by AMIRA protocol during were obtained by AMIRA protocol during
automatic cell counts. Each colored 'blob' represents the volume of a cell.

CONCLUSIONS

This analysis pipeline will allow specific sites of vulnerability along the rostral-caudal
axis of the LC to be identified for further molecular analyses aimed at understandin axis of the LC to be identified for further molecular analyses aimed at understandin the mechanisms responsible
normative aging and disease.
Acknowledgments: We are grateful to Doug Cromey, M.S (Life Science North Microscope facilities)
Thanks to Olivia Guswiler (Research Specialist) and Nolty Peggy Ann (Executive Assistant to the Acknowledgments: We are gratefu to Doug Cromey. M.S (Lire Science North Microscope faciilites).
Thanks to Olivia Guswile (Research Specialist) and Nolty Peggy Ann (Executive Assistant to the
Director). The work supported by NIH grant RO1 AgOO3376 and the McKnight
P51RROOO169, State of Arizona, Arizona Alzheimer's Consortium.

